Bioinformatic Analysis, Molecular Modeling of Role of Lys65 Residue in Catalytic Triad of D-aminopeptidase from Ochrobactrum anthropi

نویسندگان

  • I.G. Khaliullin
  • D.A. Suplatov
  • D.N. Shalaeva
  • M. Otsuka
  • Y. Asano
  • V.K. Švedas
چکیده

A bioinformatic and phylogenetic study has been performed on a family of penicillin-binding proteins including D-aminopeptidases, D-amino acid amidases, DD-carboxypeptidases, and β -lactamases. Significant homology between D-aminopeptidase from Ochrobactrum anthropi and other members of the family has been shown and a number of conserved residues identified as S62, K65, Y153, N155, H287, and G289. Three of those (Ser62, Lys65, and Tyr153) form a catalytic triangle - the proton relay system that activates the generalized nucleophile in the course of catalysis. Molecular modeling has indicated the conserved residue Lys65 to have an unusually low pKa value, which has been confirmed experimentally by a study of the pH-profile of D-aminopeptidase catalytic activity. The resulting data have been used to elucidate the role of Lys65 in the catalytic mechanism of D-aminopeptidase as a general base for proton transfer from catalytic Ser62 to Tyr153, and vice versa, during the formation and hydrolysis of the acyl - enzyme intermediate.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new variant of the Ntn hydrolase fold revealed by the crystal structure of L-aminopeptidase D-ala-esterase/amidase from Ochrobactrum anthropi.

BACKGROUND The L-aminopeptidase D-Ala-esterase/amidase from Ochrobactrum anthropi (DmpA) releases the N-terminal L and/or D-Ala residues from peptide substrates. This is the only known enzyme to liberate N-terminal amino acids with both D and L stereospecificity. The DmpA active form is an alphabeta heterodimer, which results from a putative autocatalytic cleavage of an inactive precursor polyp...

متن کامل

Molecular cloning, expression and site-directed mutagenesis of glutathione S-transferase from Ochrobactrum anthropi.

The gene coding for a novel glutathione S-transferase (GST) has been isolated from the bacterium Ochrobactrum anthropi. A PCR fragment of 230 bp was obtained using oligonucleotide primers deduced from N-terminal and 'internal' sequences of the purified enzyme. The gene was obtained by screening of a genomic DNA partial library from O. anthropi constructed in pBluescript with a PCR fragment prob...

متن کامل

The DmpA aminopeptidase from Ochrobactrum anthropi LMG7991 is the prototype of a new terminal nucleophile hydrolase family.

The DmpA (d-aminopeptidase A) protein produced by Ochrobactrum anthropi hydrolyses p-nitroanilide derivatives of glycine and d-alanine more efficiently than that of l-alanine. When regular peptides are utilized as substrates, the enzyme behaves as an aminopeptidase with a preference for N-terminal residues in an l configuration, thus exemplifying an interesting case of stereospecificity reversa...

متن کامل

Deduced catalytic mechanism of d-amino acid amidase from Ochrobactrum anthropi SV3

D-Amino acid amidase (DAA) from Ochrobactrum anthropi SV3 catalyzes D-stereospecific hydrolysis of amino acid amides. DAA has attracted attention as a catalyst for the stereospecific production of D-amino acids, although the mechanism that drives the reaction has not been clear. Previously, the structure of DAA was classified into two types, a substrate-bound state with an ordered Omega loop, a...

متن کامل

Purification, characterization, and gene cloning of purine nucleosidase from Ochrobactrum anthropi.

A bacterium, Ochrobactrum anthropi, produced a large amount of a nucleosidase when cultivated with purine nucleosides. The nucleosidase was purified to homogeneity. The enzyme has a molecular weight of about 170,000 and consists of four identical subunits. It specifically catalyzes the irreversible N-riboside hydrolysis of purine nucleosides, the K(m) values being 11.8 to 56.3 microM. The optim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2010